... proportionality1
The variable $y$ is said to be proportional to the variable $x$, if there exists a non-zero number $k$ such that $y = kx$, the relation is often denoted $y \propto x$ and the constant ratio $k = y/x$, is called the constant of proportionality.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
... dimension2
A quantity ${\mbox{\boldmath $\theta$}}$ is said to be of dimension $d$ if it may equally well be written $\{\theta_1, \theta_2, \ldots,
\theta_d\}$, i.e. it consists of $d$ distinct items.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
... statistic3
Let ${\mbox{\boldmath $x$}} = (x_1,
\ldots, x_n)^T$ be a vector of observations from a distribution with parameters ${\mbox{\boldmath $\theta$}} = (\theta_1,\ldots, \theta_k)$. Let ${\mbox{\boldmath $t$}} = t_1,\ldots, t_q)$ be $q$ functions of ${\mbox{\boldmath $x$}}$. Then the set of statistics ${\mbox{\boldmath $t$}}$ is said to be sufficient for ${\mbox{\boldmath $\theta$}}$ if the likelihood function ${\it l}({\mbox{\boldmath $\theta$}}\vert {\mbox{\boldmath $x$}})$ can be expressed in the form


\begin{displaymath}
{\it l}({\mbox{\boldmath $\theta$}}\vert {\mbox{\boldmath $...
...t g}({\mbox{\boldmath $\theta$}}\vert {\mbox{\boldmath $t$}})
\end{displaymath}

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
... candidate.4
If there exists a generated sequence of values and the current value is $X_i$, to generate $X_{i+1}$, the process is to generate a possible value for $X_{i+1}$, for example $y$, and then decide whether the chain moves to that value or stays in the current value. The value $y$ is called the candidate.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
... distribution5
The current value of the chain is called the state and the state space of the distribution is the space consisting of all possible values the distribution might take.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
... 0.01)6
rnorm(n, m, s) is the S-Plus command that generates $n$ random numbers mean $m$, standard deviation $s$ so this generates $1000$ samples using the MCMC sample from the posterior distribution of the mean as a means vector and the known parameter $\sigma$ as standard deviation.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.